Model Evaluation and Model Prediction in Keras

Last updated on Oct 30 2021
Kalpana Kapoor

Table of Contents

Model Evaluation and Model Prediction in Keras

Keras – Model Evaluation and Model Prediction

This blog deals with the model evaluation and model prediction in Keras.

Let us begin by understanding the model evaluation.

Model Evaluation

Evaluation is a process during development of the model to check whether the model is best fit for the given problem and corresponding data. Keras model provides a function, evaluate which does the evaluation of the model. It has three main arguments,

  • Test data
  • Test data label
  • verbose – true or false

Let us evaluate the model

score = model.evaluate(x_test, y_test, verbose = 0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Executing the above code will output the below information.
0

The test accuracy is 98.28%. We have created a best model to identify the handwriting digits. On the positive side, we can still scope to improve our model.

Model Prediction

Prediction is the final step and our expected outcome of the model generation. Keras provides a method, predict to get the prediction of the trained model. The signature of the predict method is as follows,

predict(
x,
batch_size = None,
verbose = 0,
steps = None,
callbacks = None,
max_queue_size = 10,
workers = 1,
use_multiprocessing = False
)
Here, all arguments are optional except the first argument, which refers the unknown input data. The shape should be maintained to get the proper prediction.
Let us do prediction for our MPL model created in previous chapter using below code −
pred = model.predict(x_test)
pred = np.argmax(pred, axis = 1)[:5]
label = np.argmax(y_test,axis = 1)[:5]
print(pred)
print(label)
Here,
Line 1 call the predict function using test data.
Line 2 gets the first five prediction
Line 3 gets the first five labels of the test data.
Line 5 - 6 prints the prediction and actual label.
The output of the above application is as follows −
[7 2 1 0 4]
[7 2 1 0 4]

The output of both array is identical and it indicate that our model predicts correctly the first five images.

So, this brings us to the end of blog. This Tecklearn ‘Model Evaluation and Model Prediction in Keras’ blog helps you with commonly asked questions if you are looking out for a job in Artificial Intelligence. If you wish to learn Artificial Intelligence and build a career in AI or Machine Learning domain, then check out our interactive, Artificial Intelligence and Deep Learning with TensorFlow Training, that comes with 24*7 support to guide you throughout your learning period. Please find the link for course details:

https://www.tecklearn.com/course/artificial-intelligence-and-deep-learning-with-tensorflow/

Artificial Intelligence and Deep Learning with TensorFlow Training

About the Course

Tecklearn’s Artificial Intelligence and Deep Learning with Tensor Flow course is curated by industry professionals as per the industry requirements & demands and aligned with the latest best practices. You’ll master convolutional neural networks (CNN), TensorFlow, TensorFlow code, transfer learning, graph visualization, recurrent neural networks (RNN), Deep Learning libraries, GPU in Deep Learning, Keras and TFLearn APIs, backpropagation, and hyperparameters via hands-on projects. The trainee will learn AI by mastering natural language processing, deep neural networks, predictive analytics, reinforcement learning, and more programming languages needed to shine in this field.

Why Should you take Artificial Intelligence and Deep Learning with Tensor Flow Training?

  • According to Paysa.com, an Artificial Intelligence Engineer earns an average of $171,715, ranging from $124,542 at the 25th percentile to $201,853 at the 75th percentile, with top earners earning more than $257,530.
  • Worldwide Spending on Artificial Intelligence Systems Will Be Nearly $98 Billion in 2023, According to New IDC Spending Guide at a GACR of 28.5%.
  • IBM, Amazon, Apple, Google, Facebook, Microsoft, Oracle and almost all the leading companies are working on Artificial Intelligence to innovate future technologies.

What you will Learn in this Course?

Introduction to Deep Learning and AI

  • What is Deep Learning?
  • Advantage of Deep Learning over Machine learning
  • Real-Life use cases of Deep Learning
  • Review of Machine Learning: Regression, Classification, Clustering, Reinforcement Learning, Underfitting and Overfitting, Optimization
  • Pre-requisites for AI & DL
  • Python Programming Language
  • Installation & IDE

Environment Set Up and Essentials

  • Installation
  • Python – NumPy
  • Python for Data Science and AI
  • Python Language Essentials
  • Python Libraries – Numpy and Pandas
  • Numpy for Mathematical Computing

More Prerequisites for Deep Learning and AI

  • Pandas for Data Analysis
  • Machine Learning Basic Concepts
  • Normalization
  • Data Set
  • Machine Learning Concepts
  • Regression
  • Logistic Regression
  • SVM – Support Vector Machines
  • Decision Trees
  • Python Libraries for Data Science and AI

Introduction to Neural Networks

  • Creating Module
  • Neural Network Equation
  • Sigmoid Function
  • Multi-layered perception
  • Weights, Biases
  • Activation Functions
  • Gradient Decent or Error function
  • Epoch, Forward & backword propagation
  • What is TensorFlow?
  • TensorFlow code-basics
  • Graph Visualization
  • Constants, Placeholders, Variables

Multi-layered Neural Networks

  • Error Back propagation issues
  • Drop outs

Regularization techniques in Deep Learning

Deep Learning Libraries

  • Tensorflow
  • Keras
  • OpenCV
  • SkImage
  • PIL

Building of Simple Neural Network from Scratch from Simple Equation

  • Training the model

Dual Equation Neural Network

  • TensorFlow
  • Predicting Algorithm

Introduction to Keras API

  • Define Keras
  • How to compose Models in Keras
  • Sequential Composition
  • Functional Composition
  • Predefined Neural Network Layers
  • What is Batch Normalization
  • Saving and loading a model with Keras
  • Customizing the Training Process
  • Using TensorBoard with Keras
  • Use-Case Implementation with Keras

GPU in Deep Learning

  • Introduction to GPUs and how they differ from CPUs
  • Importance of GPUs in training Deep Learning Networks
  • The GPU constituent with simpler core and concurrent hardware
  • Keras Model Saving and Reusing
  • Deploying Keras with TensorBoard

Keras Cat Vs Dog Modelling

  • Activation Functions in Neural Network

Optimization Techniques

  • Some Examples for Neural Network

Convolutional Neural Networks (CNN)

  • Introduction to CNNs
  • CNNs Application
  • Architecture of a CNN
  • Convolution and Pooling layers in a CNN
  • Understanding and Visualizing a CNN

RNN: Recurrent Neural Networks

  • Introduction to RNN Model
  • Application use cases of RNN
  • Modelling sequences
  • Training RNNs with Backpropagation
  • Long Short-Term memory (LSTM)
  • Recursive Neural Tensor Network Theory
  • Recurrent Neural Network Model

Application of Deep Learning in image recognition, NLP and more

Real world projects in recommender systems and others

Got a question for us? Please mention it in the comments section and we will get back to you.

 

0 responses on "Model Evaluation and Model Prediction in Keras"

Leave a Message

Your email address will not be published. Required fields are marked *