Concept of Partitioning of table in Hive

Last updated on May 30 2022
Abhimanyu Joshi

Table of Contents

Concept of Partitioning of table in Hive

Hive – Partitioning

Hive organizes tables into partitions. It is a way of dividing a table into related parts based on the values of partitioned columns such as date, city, and department. Using partition, it is easy to query a portion of the info.

Tables or partitions are sub-divided into buckets, to provide extra structure to the info that may be used for more efficient querying. Bucketing works based on the value of hash function of some column of a table.

For example, a table named Tab1 contains employee info such as id, name, dept, and yoj (i.e., year of joining). Suppose you need to retrieve the details of all employees who joined in 2012. A query searches the whole table for the required information. However, if you partition the employee info with the year and store it in a separate file, it reduces the query processing time. The subsequent example shows how to partition a file and its info:

The subsequent file contains employeeinfo table.

/tab1/employeeinfo/file1

id, name, dept, yoj

1, gopal, TP, 2012

2, kiran, HR, 2012

3, kaleel,SC, 2013

4, Prasanth, SC, 2013

 

The above info is partitioned into two files using year.

/tab1/employeeinfo/2012/file2

1, gopal, TP, 2012

2, kiran, HR, 2012

 

/tab1/employeeinfo/2013/file3

3, kaleel,SC, 2013

4, Prasanth, SC, 2013

Adding a Partition

We can add partitions to a table by altering the table. Let us assume we have a table called employee with fields such as Id, Name, Salary, Designation, Dept, and yoj.

Syntax:

ALTER TABLE table_name ADD [IF NOT EXISTS] PARTITION partition_spec

[LOCATION ‘location1’] partition_spec [LOCATION ‘location2’] …;

 

partition_spec:

: (p_column = p_col_value, p_column = p_col_value, …)

The subsequent query is used to add a partition to the employee table.

hive> ALTER TABLE employee

> ADD PARTITION (year=’2012’)

> location ‘/2012/part2012’;

Renaming a Partition

The syntax of this command is as follows.

ALTER TABLE table_name PARTITION partition_spec RENAME TO PARTITION partition_spec;

The subsequent query is used to rename a partition:

hive> ALTER TABLE employee PARTITION (year=’1203’)

> RENAME TO PARTITION (Yoj=’1203’);

Dropping a Partition

The subsequent syntax is used to drop a partition:

ALTER TABLE table_name DROP [IF EXISTS] PARTITION partition_spec, PARTITION partition_spec,…;

The subsequent query is used to drop a partition:

hive> ALTER TABLE employee DROP [IF EXISTS]

> PARTITION (year=’1203’);

 

So, this brings us to the end of blog. This Tecklearn ‘Concept of Partitioning of table in Hive’ helps you with commonly asked questions if you are looking out for a job in Big Data and Hadoop Domain.

If you wish to learn Hive and build a career in Big Data or Hadoop domain, then check out our interactive, Big Data Hadoop-Architect (All in 1) Combo Training, that comes with 24*7 support to guide you throughout your learning period. Please find the link for course details:

https://www.tecklearn.com/course/bigdata-hadoop-architect-all-in-1-combo-course/

Big Data Hadoop-Architect (All in 1) Combo Training

About the Course

Tecklearn’s Big Data Hadoop-Architect (All in 1) combo includes the following Courses:

  • BigData Hadoop Analyst
  • BigData Hadoop Developer
  • BigData Hadoop Administrator
  • BigData Hadoop Tester
  • Big Data Security with Kerberos

Why Should you take BigData Hadoop Combo Training?

  • Average salary for a Hadoop Administrator ranges from approximately $104,528 to $141,391 per annum – Indeed.com
  • Average salary for a Spark and Hadoop Developer ranges from approximately $106,366 to $127,619 per annum – Indeed.com
  • Average salary for a Big Data Hadoop Analyst is $115,819– ZipRecruiter.com

What you will Learn in this Course?

Introduction

  • The Case for Apache Hadoop
  • Why Hadoop?
  • Core Hadoop Components
  • Fundamental Concepts

HDFS

  • HDFS Features
  • Writing and Reading Files
  • NameNode Memory Considerations
  • Overview of HDFS Security
  • Using the Namenode Web UI
  • Using the Hadoop File Shell

Getting Data into HDFS

  • Ingesting Data from External Sources with Flume
  • Ingesting Data from Relational Databases with Sqoop
  • REST Interfaces
  • Best Practices for Importing Data

YARN and MapReduce

  • What Is MapReduce?
  • Basic MapReduce Concepts
  • YARN Cluster Architecture
  • Resource Allocation
  • Failure Recovery
  • Using the YARN Web UI
  • MapReduce Version 1

Planning Your Hadoop Cluster

  • General Planning Considerations
  • Choosing the Right Hardware
  • Network Considerations
  • Configuring Nodes
  • Planning for Cluster Management

Hadoop Installation and Initial Configuration

  • Deployment Types
  • Installing Hadoop
  • Specifying the Hadoop Configuration
  • Performing Initial HDFS Configuration
  • Performing Initial YARN and MapReduce Configuration
  • Hadoop Logging

Installing and Configuring Hive, Impala, and Pig

  • Hive
  • Impala
  • Pig

Hadoop Clients

  • What is a Hadoop Client?
  • Installing and Configuring Hadoop Clients
  • Installing and Configuring Hue
  • Hue Authentication and Authorization

Cloudera Manager

  • The Motivation for Cloudera Manager
  • Cloudera Manager Features
  • Express and Enterprise Versions
  • Cloudera Manager Topology
  • Installing Cloudera Manager
  • Installing Hadoop Using Cloudera Manager
  • Performing Basic Administration Tasks Using Cloudera Manager

Advanced Cluster Configuration

  • Advanced Configuration Parameters
  • Configuring Hadoop Ports
  • Explicitly Including and Excluding Hosts
  • Configuring HDFS for Rack Awareness
  • Configuring HDFS High Availability

Hadoop Security

  • Why Hadoop Security Is Important
  • Hadoop’s Security System Concepts
  • What Kerberos Is and How it Works
  • Securing a Hadoop Cluster with Kerberos

Managing and Scheduling Jobs

  • Managing Running Jobs
  • Scheduling Hadoop Jobs
  • Configuring the Fair Scheduler
  • Impala Query Scheduling

Cluster Maintenance

  • Checking HDFS Status
  • Copying Data Between Clusters
  • Adding and Removing Cluster Nodes
  • Rebalancing the Cluster
  • Cluster Upgrading

Cluster Monitoring and Troubleshooting

  • General System Monitoring
  • Monitoring Hadoop Clusters
  • Common Troubleshooting Hadoop Clusters
  • Common Misconfigurations

Introduction to Pig

  • What Is Pig?
  • Pig’s Features
  • Pig Use Cases
  • Interacting with Pig

Basic Data Analysis with Pig

  • Pig Latin Syntax
  • Loading Data
  • Simple Data Types
  • Field Definitions
  • Data Output
  • Viewing the Schema
  • Filtering and Sorting Data
  • Commonly-Used Functions

Processing Complex Data with Pig

  • Storage Formats
  • Complex/Nested Data Types
  • Grouping
  • Built-In Functions for Complex Data
  • Iterating Grouped Data

Multi-Dataset Operations with Pig

  • Techniques for Combining Data Sets
  • Joining Data Sets in Pig
  • Set Operations
  • Splitting Data Sets

Pig Troubleshooting and Optimization

  • Troubleshooting Pig
  • Logging
  • Using Hadoop’s Web UI
  • Data Sampling and Debugging
  • Performance Overview
  • Understanding the Execution Plan
  • Tips for Improving the Performance of Your Pig Jobs

Introduction to Hive and Impala

  • What Is Hive?
  • What Is Impala?
  • Schema and Data Storage
  • Comparing Hive to Traditional Databases
  • Hive Use Cases

Querying with Hive and Impala

  • Databases and Tables
  • Basic Hive and Impala Query Language Syntax
  • Data Types
  • Differences Between Hive and Impala Query Syntax
  • Using Hue to Execute Queries
  • Using the Impala Shell

Data Management

  • Data Storage
  • Creating Databases and Tables
  • Loading Data
  • Altering Databases and Tables
  • Simplifying Queries with Views
  • Storing Query Results

Data Storage and Performance

  • Partitioning Tables
  • Choosing a File Format
  • Managing Metadata
  • Controlling Access to Data

Relational Data Analysis with Hive and Impala

  • Joining Datasets
  • Common Built-In Functions
  • Aggregation and Windowing

Working with Impala 

  • How Impala Executes Queries
  • Extending Impala with User-Defined Functions
  • Improving Impala Performance

Analyzing Text and Complex Data with Hive

  • Complex Values in Hive
  • Using Regular Expressions in Hive
  • Sentiment Analysis and N-Grams
  • Conclusion

Hive Optimization 

  • Understanding Query Performance
  • Controlling Job Execution Plan
  • Bucketing
  • Indexing Data

Extending Hive 

  • SerDes
  • Data Transformation with Custom Scripts
  • User-Defined Functions
  • Parameterized Queries

Importing Relational Data with Apache Sqoop

  • Sqoop Overview
  • Basic Imports and Exports
  • Limiting Results
  • Improving Sqoop’s Performance
  • Sqoop 2

Introduction to Impala and Hive

  • Introduction to Impala and Hive
  • Why Use Impala and Hive?
  • Comparing Hive to Traditional Databases
  • Hive Use Cases

Modelling and Managing Data with Impala and Hive

  • Data Storage Overview
  • Creating Databases and Tables
  • Loading Data into Tables
  • HCatalog
  • Impala Metadata Caching

Data Formats

  • Selecting a File Format
  • Hadoop Tool Support for File Formats
  • Avro Schemas
  • Using Avro with Hive and Sqoop
  • Avro Schema Evolution
  • Compression

Data Partitioning

  • Partitioning Overview
  • Partitioning in Impala and Hive

Capturing Data with Apache Flume

  • What is Apache Flume?
  • Basic Flume Architecture
  • Flume Sources
  • Flume Sinks
  • Flume Channels
  • Flume Configuration

Spark Basics

  • What is Apache Spark?
  • Using the Spark Shell
  • RDDs (Resilient Distributed Datasets)
  • Functional Programming in Spark

Working with RDDs in Spark

  • A Closer Look at RDDs
  • Key-Value Pair RDDs
  • MapReduce
  • Other Pair RDD Operations

Writing and Deploying Spark Applications

  • Spark Applications vs. Spark Shell
  • Creating the SparkContext
  • Building a Spark Application (Scala and Java)
  • Running a Spark Application
  • The Spark Application Web UI
  • Configuring Spark Properties
  • Logging

Parallel Programming with Spark

  • Review: Spark on a Cluster
  • RDD Partitions
  • Partitioning of File-based RDDs
  • HDFS and Data Locality
  • Executing Parallel Operations
  • Stages and Tasks

Spark Caching and Persistence

  • RDD Lineage
  • Caching Overview
  • Distributed Persistence

Common Patterns in Spark Data Processing

  • Common Spark Use Cases
  • Iterative Algorithms in Spark
  • Graph Processing and Analysis
  • Machine Learning
  • Example: k-means

Preview: Spark SQL

  • Spark SQL and the SQL Context
  • Creating DataFrames
  • Transforming and Querying DataFrames
  • Saving DataFrames
  • Comparing Spark SQL with Impala

Hadoop Testing

  • Hadoop Application Testing
  • Roles and Responsibilities of Hadoop Testing Professional
  • Framework MRUnit for Testing of MapReduce Programs
  • Unit Testing
  • Test Execution
  • Test Plan Strategy and Writing Test Cases for Testing Hadoop Application

Big Data Testing

  • BigData Testing
  • Unit Testing
  • Integration Testing
  • Functional Testing
  • Non-Functional Testing
  • Golden Data Set

System Testing

  • Building and Set up
  • Testing SetUp
  • Solary Server
  • Non-Functional Testing
  • Longevity Testing
  • Volumetric Testing

Security Testing

  • Security Testing
  • Non-Functional Testing
  • Hadoop Cluster
  • Security-Authorization RBA
  • IBM Project

Automation Testing

  • Query Surge Tool

Oozie

  • Why Oozie
  • Installation Engine
  • Oozie Workflow Engine
  • Oozie security
  • Oozie Job Process
  • Oozie terminology
  • Oozie bundle

Got a question for us? Please mention it in the comments section and we will get back to you.

0 responses on "Concept of Partitioning of table in Hive"

Leave a Message

Your email address will not be published. Required fields are marked *