Introduction to Impala, its features, advantages and disadvantages

Last updated on May 30 2022
Swati Dogra

Table of Contents

Introduction to Impala, its features, advantages and disadvantages

Impala – Introduction

What is Impala?

Impala is a MPP (Massive Parallel Processing) SQL query engine for processing huge volumes of data that is stored in Hadoop cluster. It is an open-source software which is written in C++ and Java. It provides high performance and low latency compared to other SQL engines for Hadoop.

In other words, Impala is the highest performing SQL engine (giving RDBMS-like experience) which provides the fastest way to access data that is stored in Hadoop Distributed File System.

Why Impala?

Impala combines the SQL support and multi-user performance of a traditional analytic database with the scalability and flexibility of Apache Hadoop, by utilizing standard components such as HDFS, HBase, Metastore, YARN, and Sentry.

  • With Impala, users can communicate with HDFS or HBase using SQL queries in a faster way compared to other SQL engines like Hive.
  • Impala can read almost all the file formats such as Parquet, Avro, RCFile used by Hadoop.

Impala uses the same metadata, SQL syntax (Hive SQL), ODBC driver, and user interface (Hue Beeswax) as Apache Hive, providing a familiar and unified platform for batch-oriented or real-time queries.

Unlike Apache Hive, Impala is not based on MapReduce algorithms. It implements a distributed architecture based on daemon processes that are responsible for all the aspects of query execution that run on the same machines.

Thus, it reduces the latency of utilizing MapReduce and this makes Impala faster than Apache Hive.

Advantages of Impala

Here is a list of some noted advantages of Cloudera Impala.

  • Using impala, you can process data that is stored in HDFS at lightning-fast speed with traditional SQL knowledge.
  • Since the data processing is carried where the data resides (on Hadoop cluster), data transformation and data movement is not required for data stored on Hadoop, while working with Impala.
  • Using Impala, you can access the data that is stored in HDFS, HBase, and Amazon s3 without the knowledge of Java (MapReduce jobs). You can access them with a basic idea of SQL queries.
  • To write queries in business tools, the data has to be gone through a complicated extract-transform-load (ETL) cycle. But, with Impala, this procedure is shortened. The time-consuming stages of loading & reorganizing is overcome with the new techniques such as exploratory data analysis & data discoverymaking the process faster.
  • Impala is pioneering the use of the Parquet file format, a columnar storage layout that is optimized for large-scale queries typical in data warehouse scenarios.

Features of Impala

Given below are the features of cloudera Impala −

  • Impala is available freely as open source under the Apache license.
  • Impala supports in-memory data processing, i.e., it accesses/analyzes data that is stored on Hadoop data nodes without data movement.
  • You can access data using Impala using SQL-like queries.
  • Impala provides faster access for the data in HDFS when compared to other SQL engines.
  • Using Impala, you can store data in storage systems like HDFS, Apache HBase, and Amazon s3.
  • You can integrate Impala with business intelligence tools like Tableau, Pentaho, Micro strategy, and Zoom data.
  • Impala supports various file formats such as, LZO, Sequence File, Avro, RCFile, and Parquet.
  • Impala uses metadata, ODBC driver, and SQL syntax from Apache Hive.

Relational Databases and Impala

Impala uses a Query language that is similar to SQL and HiveQL. The following table describes some of the key dfferences between SQL and Impala Query language.

Impala Relational databases
Impala uses an SQL like query language that is similar to HiveQL. Relational databases use SQL language.
In Impala, you cannot update or delete individual records. In relational databases, it is possible to update or delete individual records.
Impala does not support transactions. Relational databases support transactions.
Impala does not support indexing. Relational databases support indexing.
Impala stores and manages large amounts of data (petabytes). Relational databases handle smaller amounts of data (terabytes) when compared to Impala.

Hive, Hbase, and Impala

Though Cloudera Impala uses the same query language, metastore, and the user interface as Hive, it differs with Hive and HBase in certain aspects. The following table presents a comparative analysis among HBase, Hive, and Impala.

HBase Hive Impala
HBase is wide-column store database based on Apache Hadoop. It uses the concepts of BigTable. Hive is a data warehouse software. Using this, we can access and manage large distributed datasets, built on Hadoop. Impala is a tool to manage, analyze data that is stored on Hadoop.
The data model of HBase is wide column store. Hive follows Relational model. Impala follows Relational model.
HBase is developed using Java language. Hive is developed using Java language. Impala is developed using C++.
The data model of HBase is schema-free. The data model of Hive is Schema-based. The data model of Impala is Schema-based.
HBase provides Java, RESTful and, Thrift API’s. Hive provides JDBC, ODBC, Thrift API’s. Impala provides JDBC and ODBC API’s.
Supports programming languages like C, C#, C++, Groovy, Java PHP, Python, and Scala. Supports programming languages like C++, Java, PHP, and Python. Impala supports all languages supporting JDBC/ODBC.
HBase provides support for triggers. Hive does not provide any support for triggers. Impala does not provide any support for triggers.

All these three databases −

  • Are NOSQL databases.
  • Available as open source.
  • Support server-side scripting.
  • Follow ACID properties like Durability and Concurrency.
  • Use shardingfor partitioning.

Drawbacks of Impala

Some of the drawbacks of using Impala are as follows −

  • Impala does not provide any support for Serialization and Deserialization.
  • Impala can only read text files, not custom binary files.
  • Whenever new records/files are added to the data directory in HDFS, the table needs to be refreshed.

So, this brings us to the end of blog. This Tecklearn ‘Introduction to Impala , its features , advantages and disadvantages’ helps you with commonly asked questions if you are looking out for a job in Big Data and Hadoop Domain.

If you wish to learn Impala and build a career in Big Data or Hadoop domain, then check out our interactive, Big Data Hadoop-Architect (All in 1) Combo Training, that comes with 24*7 support to guide you throughout your learning period. Please find the link for course details:

https://www.tecklearn.com/course/bigdata-hadoop-architect-all-in-1-combo-course/

Big Data Hadoop-Architect (All in 1) Combo Training

About the Course

Tecklearn’s Big Data Hadoop-Architect (All in 1) combo includes the following Courses:

  • BigData Hadoop Analyst
  • BigData Hadoop Developer
  • BigData Hadoop Administrator
  • BigData Hadoop Tester
  • Big Data Security with Kerberos

Why Should you take BigData Hadoop Combo Training?

  • Average salary for a Hadoop Administrator ranges from approximately $104,528 to $141,391 per annum – Indeed.com
  • Average salary for a Spark and Hadoop Developer ranges from approximately $106,366 to $127,619 per annum – Indeed.com
  • Average salary for a Big Data Hadoop Analyst is $115,819– ZipRecruiter.com

What you will Learn in this Course?

Introduction

  • The Case for Apache Hadoop
  • Why Hadoop?
  • Core Hadoop Components
  • Fundamental Concepts

HDFS

  • HDFS Features
  • Writing and Reading Files
  • NameNode Memory Considerations
  • Overview of HDFS Security
  • Using the Namenode Web UI
  • Using the Hadoop File Shell

Getting Data into HDFS

  • Ingesting Data from External Sources with Flume
  • Ingesting Data from Relational Databases with Sqoop
  • REST Interfaces
  • Best Practices for Importing Data

YARN and MapReduce

  • What Is MapReduce?
  • Basic MapReduce Concepts
  • YARN Cluster Architecture
  • Resource Allocation
  • Failure Recovery
  • Using the YARN Web UI
  • MapReduce Version 1

Planning Your Hadoop Cluster

  • General Planning Considerations
  • Choosing the Right Hardware
  • Network Considerations
  • Configuring Nodes
  • Planning for Cluster Management

Hadoop Installation and Initial Configuration

  • Deployment Types
  • Installing Hadoop
  • Specifying the Hadoop Configuration
  • Performing Initial HDFS Configuration
  • Performing Initial YARN and MapReduce Configuration
  • Hadoop Logging

Installing and Configuring Hive, Impala, and Pig

  • Hive
  • Impala
  • Pig

Hadoop Clients

  • What is a Hadoop Client?
  • Installing and Configuring Hadoop Clients
  • Installing and Configuring Hue
  • Hue Authentication and Authorization

Cloudera Manager

  • The Motivation for Cloudera Manager
  • Cloudera Manager Features
  • Express and Enterprise Versions
  • Cloudera Manager Topology
  • Installing Cloudera Manager
  • Installing Hadoop Using Cloudera Manager
  • Performing Basic Administration Tasks Using Cloudera Manager

Advanced Cluster Configuration

  • Advanced Configuration Parameters
  • Configuring Hadoop Ports
  • Explicitly Including and Excluding Hosts
  • Configuring HDFS for Rack Awareness
  • Configuring HDFS High Availability

Hadoop Security

  • Why Hadoop Security Is Important
  • Hadoop’s Security System Concepts
  • What Kerberos Is and How it Works
  • Securing a Hadoop Cluster with Kerberos

Managing and Scheduling Jobs

  • Managing Running Jobs
  • Scheduling Hadoop Jobs
  • Configuring the Fair Scheduler
  • Impala Query Scheduling

Cluster Maintenance

  • Checking HDFS Status
  • Copying Data Between Clusters
  • Adding and Removing Cluster Nodes
  • Rebalancing the Cluster
  • Cluster Upgrading

Cluster Monitoring and Troubleshooting

  • General System Monitoring
  • Monitoring Hadoop Clusters
  • Common Troubleshooting Hadoop Clusters
  • Common Misconfigurations

Introduction to Pig

  • What Is Pig?
  • Pig’s Features
  • Pig Use Cases
  • Interacting with Pig

Basic Data Analysis with Pig

  • Pig Latin Syntax
  • Loading Data
  • Simple Data Types
  • Field Definitions
  • Data Output
  • Viewing the Schema
  • Filtering and Sorting Data
  • Commonly-Used Functions

Processing Complex Data with Pig

  • Storage Formats
  • Complex/Nested Data Types
  • Grouping
  • Built-In Functions for Complex Data
  • Iterating Grouped Data

Multi-Dataset Operations with Pig

  • Techniques for Combining Data Sets
  • Joining Data Sets in Pig
  • Set Operations
  • Splitting Data Sets

Pig Troubleshooting and Optimization

  • Troubleshooting Pig
  • Logging
  • Using Hadoop’s Web UI
  • Data Sampling and Debugging
  • Performance Overview
  • Understanding the Execution Plan
  • Tips for Improving the Performance of Your Pig Jobs

Introduction to Hive and Impala

  • What Is Hive?
  • What Is Impala?
  • Schema and Data Storage
  • Comparing Hive to Traditional Databases
  • Hive Use Cases

Querying with Hive and Impala

  • Databases and Tables
  • Basic Hive and Impala Query Language Syntax
  • Data Types
  • Differences Between Hive and Impala Query Syntax
  • Using Hue to Execute Queries
  • Using the Impala Shell

Data Management

  • Data Storage
  • Creating Databases and Tables
  • Loading Data
  • Altering Databases and Tables
  • Simplifying Queries with Views
  • Storing Query Results

Data Storage and Performance

  • Partitioning Tables
  • Choosing a File Format
  • Managing Metadata
  • Controlling Access to Data

Relational Data Analysis with Hive and Impala

  • Joining Datasets
  • Common Built-In Functions
  • Aggregation and Windowing

Working with Impala 

  • How Impala Executes Queries
  • Extending Impala with User-Defined Functions
  • Improving Impala Performance

Analyzing Text and Complex Data with Hive

  • Complex Values in Hive
  • Using Regular Expressions in Hive
  • Sentiment Analysis and N-Grams
  • Conclusion

Hive Optimization 

  • Understanding Query Performance
  • Controlling Job Execution Plan
  • Bucketing
  • Indexing Data

Extending Hive 

  • SerDes
  • Data Transformation with Custom Scripts
  • User-Defined Functions
  • Parameterized Queries

Importing Relational Data with Apache Sqoop

  • Sqoop Overview
  • Basic Imports and Exports
  • Limiting Results
  • Improving Sqoop’s Performance
  • Sqoop 2

Introduction to Impala and Hive

  • Introduction to Impala and Hive
  • Why Use Impala and Hive?
  • Comparing Hive to Traditional Databases
  • Hive Use Cases

Modelling and Managing Data with Impala and Hive

  • Data Storage Overview
  • Creating Databases and Tables
  • Loading Data into Tables
  • HCatalog
  • Impala Metadata Caching

Data Formats

  • Selecting a File Format
  • Hadoop Tool Support for File Formats
  • Avro Schemas
  • Using Avro with Hive and Sqoop
  • Avro Schema Evolution
  • Compression

Data Partitioning

  • Partitioning Overview
  • Partitioning in Impala and Hive

Capturing Data with Apache Flume

  • What is Apache Flume?
  • Basic Flume Architecture
  • Flume Sources
  • Flume Sinks
  • Flume Channels
  • Flume Configuration

Spark Basics

  • What is Apache Spark?
  • Using the Spark Shell
  • RDDs (Resilient Distributed Datasets)
  • Functional Programming in Spark

Working with RDDs in Spark

  • A Closer Look at RDDs
  • Key-Value Pair RDDs
  • MapReduce
  • Other Pair RDD Operations

Writing and Deploying Spark Applications

  • Spark Applications vs. Spark Shell
  • Creating the SparkContext
  • Building a Spark Application (Scala and Java)
  • Running a Spark Application
  • The Spark Application Web UI
  • Configuring Spark Properties
  • Logging

Parallel Programming with Spark

  • Review: Spark on a Cluster
  • RDD Partitions
  • Partitioning of File-based RDDs
  • HDFS and Data Locality
  • Executing Parallel Operations
  • Stages and Tasks

Spark Caching and Persistence

  • RDD Lineage
  • Caching Overview
  • Distributed Persistence

Common Patterns in Spark Data Processing

  • Common Spark Use Cases
  • Iterative Algorithms in Spark
  • Graph Processing and Analysis
  • Machine Learning
  • Example: k-means

Preview: Spark SQL

  • Spark SQL and the SQL Context
  • Creating DataFrames
  • Transforming and Querying DataFrames
  • Saving DataFrames
  • Comparing Spark SQL with Impala

Hadoop Testing

  • Hadoop Application Testing
  • Roles and Responsibilities of Hadoop Testing Professional
  • Framework MRUnit for Testing of MapReduce Programs
  • Unit Testing
  • Test Execution
  • Test Plan Strategy and Writing Test Cases for Testing Hadoop Application

Big Data Testing

  • BigData Testing
  • Unit Testing
  • Integration Testing
  • Functional Testing
  • Non-Functional Testing
  • Golden Data Set

System Testing

  • Building and Set up
  • Testing SetUp
  • Solary Server
  • Non-Functional Testing
  • Longevity Testing
  • Volumetric Testing

Security Testing

  • Security Testing
  • Non-Functional Testing
  • Hadoop Cluster
  • Security-Authorization RBA
  • IBM Project

Automation Testing

  • Query Surge Tool

Oozie

  • Why Oozie
  • Installation Engine
  • Oozie Workflow Engine
  • Oozie security
  • Oozie Job Process
  • Oozie terminology
  • Oozie bundle

Got a question for us? Please mention it in the comments section and we will get back to you.

 

0 responses on "Introduction to Impala, its features, advantages and disadvantages"

Leave a Message

Your email address will not be published. Required fields are marked *