Detailed understanding of Operators in Scala Language

Last updated on May 30 2022
Shakuntala Deskmukh

Table of Contents

Detailed understanding of Operators in Scala Language

Scala – Operators

An operator is a symbol that tells the compiler to perform specific mathematical or logical manipulations. Scala is rich in built-in operators and provides the subsequent types of operators −

  • Arithmetic Operators
  • Relational Operators
  • Logical Operators
  • Bitwise Operators
  • Assignment Operators

This blog will examine the arithmetic, relational, logical, bitwise, assignment and other operators one by one.

Arithmetic Operators

The subsequent arithmetic operators are supported by Scala language. For example, let us assume variable A holds 10 and variable B holds 20, then −

Show Examples

Operator Description Example
+ Adds two operands A + B will give 30
Subtracts second operand from the first A – B will give -10
* Multiplies both operands A * B will give 200
/ Divides numerator by de-numerator B / A will give 2
% Modulus operator finds the remainder after division of one number by another B % A will give 0

Relational Operators

The subsequent relational operators are supported by Scala language. For example, let us assume variable A holds 10 and variable B holds 20, then −

Operator Description Example
== Checks if the values of two operands are equal or not, if yes then condition becomes true. (A == B) is not true.
!= Checks if the values of two operands are equal or not, if values are not equal then condition becomes true. (A != B) is true.
> Checks if the value of left operand is greater than the value of right operand, if yes then condition becomes true. (A > B) is not true.
< Checks if the value of left operand is less than the value of right operand, if yes then condition becomes true. (A < B) is true.
>= Checks if the value of left operand is greater than or equal to the value of right operand, if yes then condition becomes true. (A >= B) is not true.
<= Checks if the value of left operand is less than or equal to the value of right operand, if yes then condition becomes true. (A <= B) is true.

Logical Operators

The subsequent logical operators are supported by Scala language. For example, assume variable A holds 1 and variable B holds 0, then −

Operator Description Example
&& It is called Logical AND operator. If both the operands are non zero then condition becomes true. (A && B) is false.
|| It is called Logical OR Operator. If any of the two operands is non zero then condition becomes true. (A || B) is true.
! It is called Logical NOT Operator. Use to reverses the logical state of its operand. If a condition is true then Logical NOT operator will make false. !(A && B) is true.

Bitwise Operators

Bitwise operator works on bits and perform bit by bit operation. The truth tables for &, |, and ^ are as follows −

p q p & q p | q p ^ q
0 0 0 0 0
0 1 0 1 1
1 1 1 1 0
1 0 0 1 1

Assume if A = 60; and B = 13; now in binary format they will be as follows −

A = 0011 1100

B = 0000 1101

———————–

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by Scala language is listed in the subsequent table. Assume variable A holds 60 and variable B holds 13, then −

Operator Description Example
& Binary AND Operator copies a bit to the result if it exists in both operands. (A & B) will give 12, which is 0000 1100
| Binary OR Operator copies a bit if it exists in either operand. (A | B) will give 61, which is 0011 1101
^ Binary XOR Operator copies the bit if it is set in one operand but not both. (A ^ B) will give 49, which is 0011 0001
~ Binary Ones Complement Operator is unary and has the effect of ‘flipping’ bits. (~A ) will give -61, which is 1100 0011 in 2’s complement form due to a signed binary number.
<< Binary Left Shift Operator. The bit positions of the left operands value is moved left by the number of bits specified by the right operand. A << 2 will give 240, which is 1111 0000
>> Binary Right Shift Operator. The Bit positions of the left operand value is moved right by the number of bits specified by the right operand. A >> 2 will give 15, which is 1111
>>> Shift right zero fill operator. The left operands value is moved right by the number of bits specified by the right operand and shifted values are filled up with zeros. A >>>2 will give 15 which is 0000 1111

Assignment Operators

There are subsequent assignment operators supported by Scala language −

Operator Description Example
= Simple assignment operator, Assigns values from right side operands to left side operand C = A + B will assign value of A + B into C
+= Add AND assignment operator, It adds right operand to the left operand and assign the result to left operand C += A is equivalent to C = C + A
-= Subtract AND assignment operator, It subtracts right operand from the left operand and assign the result to left operand C -= A is equivalent to C = C – A
*= Multiply AND assignment operator, It multiplies right operand with the left operand and assign the result to left operand C *= A is equivalent to C = C * A
/= Divide AND assignment operator, It divides left operand with the right operand and assign the result to left operand C /= A is equivalent to C = C / A
%= Modulus AND assignment operator, It takes modulus using two operands and assign the result to left operand C %= A is equivalent to C = C % A
<<= Left shift AND assignment operator C <<= 2 is equivalent as C = C << 2
>>= Right shift AND assignment operator C >>= 2 is equivalent as C = C >> 2
&= Bitwise AND assignment operator C &= 2 is equivalent as C = C & 2
^= bitwise exclusive OR and assignment operator C ^= 2 is equivalent as C = C ^ 2
|= bitwise inclusive OR and assignment operator C |= 2 is equivalent as C = C | 2

Operators Precedence in Scala

Operator precedence determines the grouping of terms in an expression. This affects how an expression is evaluated. Certain operators have higher precedence than others; for example, the multiplication operator has higher precedence than the addition operator −

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Take a look at the subsequent table. Operators with the highest precedence appear at the top of the table and those with the lowest precedence appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

Category Operator Associativity
Postfix () [] Left to right
Unary ! ~ Right to left
Multiplicative * / % Left to right
Additive + – Left to right
Shift >> >>> << Left to right
Relational > >= < <= Left to right
Equality == != Left to right
Bitwise AND & Left to right
Bitwise XOR ^ Left to right
Bitwise OR | Left to right
Logical AND && Left to right
Logical OR || Left to right
Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left
Comma , Left to right

 

So, this brings us to the end of blog. This Tecklearn ‘Detailed understanding of Operators in Scala Language’ helps you with commonly asked questions if you are looking out for a job in Apache Spark and Scala and Big Data Developer. If you wish to learn Apache Spark and Scala and build a career in Big Data Hadoop domain, then check out our interactive, Apache Spark and Scala Training, that comes with 24*7 support to guide you throughout your learning period. Please find the link for course details:

https://www.tecklearn.com/course/apache-spark-and-scala-certification/

Apache Spark and Scala Training

About the Course

Tecklearn Spark training lets you master real-time data processing using Spark streaming, Spark SQL, Spark RDD and Spark Machine Learning libraries (Spark MLlib). This Spark certification training helps you master the essential skills of the Apache Spark open-source framework and Scala programming language, including Spark Streaming, Spark SQL, machine learning programming, GraphX programming, and Shell Scripting Spark. You will also understand the role of Spark in overcoming the limitations of MapReduce. Upon completion of this online training, you will hold a solid understanding and hands-on experience with Apache Spark.

Why Should you take Apache Spark and Scala Training?

  • The average salary for Apache Spark developer ranges from approximately $93,486 per year for Developer to $128,313 per year for Data Engineer. – Indeed.com
  • Wells Fargo, Microsoft, Capital One, Apple, JPMorgan Chase & many other MNC’s worldwide use Apache Spark across industries.
  • Global Spark market revenue will grow to $4.2 billion by 2022 with a CAGR of 67% Marketanalysis.com

What you will Learn in this Course?

Introduction to Scala for Apache Spark

  • What is Scala
  • Why Scala for Spark
  • Scala in other Frameworks
  • Scala REPL
  • Basic Scala Operations
  • Variable Types in Scala
  • Control Structures in Scala
  • Loop, Functions and Procedures
  • Collections in Scala
  • Array Buffer, Map, Tuples, Lists

Functional Programming and OOPs Concepts in Scala

  • Functional Programming
  • Higher Order Functions
  • Anonymous Functions
  • Class in Scala
  • Getters and Setters
  • Custom Getters and Setters
  • Constructors in Scala
  • Singletons
  • Extending a Class using Method Overriding

Introduction to Spark

  • Introduction to Spark
  • How Spark overcomes the drawbacks of MapReduce
  • Concept of In Memory MapReduce
  • Interactive operations on MapReduce
  • Understanding Spark Stack
  • HDFS Revision and Spark Hadoop YARN
  • Overview of Spark and Why it is better than Hadoop
  • Deployment of Spark without Hadoop
  • Cloudera distribution and Spark history server

Basics of Spark

  • Spark Installation guide
  • Spark configuration and memory management
  • Driver Memory Versus Executor Memory
  • Working with Spark Shell
  • Resilient distributed datasets (RDD)
  • Functional programming in Spark and Understanding Architecture of Spark

Playing with Spark RDDs

  • Challenges in Existing Computing Methods
  • Probable Solution and How RDD Solves the Problem
  • What is RDD, It’s Operations, Transformations & Actions Data Loading and Saving Through RDDs
  • Key-Value Pair RDDs
  • Other Pair RDDs and Two Pair RDDs
  • RDD Lineage
  • RDD Persistence
  • Using RDD Concepts Write a Wordcount Program
  • Concept of RDD Partitioning and How It Helps Achieve Parallelization
  • Passing Functions to Spark

Writing and Deploying Spark Applications

  • Creating a Spark application using Scala or Java
  • Deploying a Spark application
  • Scala built application
  • Creating application using SBT
  • Deploying application using Maven
  • Web user interface of Spark application
  • A real-world example of Spark and configuring of Spark

Parallel Processing

  • Concept of Spark parallel processing
  • Overview of Spark partitions
  • File Based partitioning of RDDs
  • Concept of HDFS and data locality
  • Technique of parallel operations
  • Comparing coalesce and Repartition and RDD actions

Machine Learning using Spark MLlib

  • Why Machine Learning
  • What is Machine Learning
  • Applications of Machine Learning
  • Face Detection: USE CASE
  • Machine Learning Techniques
  • Introduction to MLlib
  • Features of MLlib and MLlib Tools
  • Various ML algorithms supported by MLlib

Integrating Apache Flume and Apache Kafka

  • Why Kafka, what is Kafka and Kafka architecture
  • Kafka workflow and Configuring Kafka cluster
  • Basic operations and Kafka monitoring tools
  • Integrating Apache Flume and Apache Kafka

Apache Spark Streaming

  • Why Streaming is Necessary
  • What is Spark Streaming
  • Spark Streaming Features
  • Spark Streaming Workflow
  • Streaming Context and DStreams
  • Transformations on DStreams
  • Describe Windowed Operators and Why it is Useful
  • Important Windowed Operators
  • Slice, Window and ReduceByWindow Operators
  • Stateful Operators

Improving Spark Performance

  • Learning about accumulators
  • The common performance issues and troubleshooting the performance problems

DataFrames and Spark SQL

  • Need for Spark SQL
  • What is Spark SQL
  • Spark SQL Architecture
  • SQL Context in Spark SQL
  • User Defined Functions
  • Data Frames and Datasets
  • Interoperating with RDDs
  • JSON and Parquet File Formats
  • Loading Data through Different Sources

Scheduling and Partitioning in Apache Spark

  • Concept of Scheduling and Partitioning in Spark
  • Hash partition and range partition
  • Scheduling applications
  • Static partitioning and dynamic sharing
  • Concept of Fair scheduling
  • Map partition with index and Zip
  • High Availability
  • Single-node Recovery with Local File System and High Order Functions
Got a question for us? Please mention it in the comments section and we will get back to you.

 

 

0 responses on "Detailed understanding of Operators in Scala Language"

Leave a Message

Your email address will not be published. Required fields are marked *