How to use Cross Operator and Union Operator in Pig Latin

Last updated on May 30 2022
Inderjeet Chopra

Table of Contents

How to use Cross Operator and Union Operator in Pig Latin

Apache Pig – Cross Operator

The CROSS operator computes the cross-product of two or more relations. This blog explains with example how to use the cross operator in Pig Latin.
Syntax
Given below is the syntax of the CROSS operator.
grunt> Relation3_name = CROSS Relation1_name, Relation2_name;
Example
Assume that we have two files namely customers.txt and orders.txt in the /pig_data/ directory of HDFS as shown below.
customers.txt
1,Ramesh,32,Ahmedabad,2000.00
2,Khilan,25,Delhi,1500.00
3,kaushik,23,Kota,2000.00
4,Chaitali,25,Mumbai,6500.00
5,Hardik,27,Bhopal,8500.00
6,Komal,22,MP,4500.00
7,Muffy,24,Indore,10000.00
orders.txt
102,2009-10-08 00:00:00,3,3000
100,2009-10-08 00:00:00,3,1500
101,2009-11-20 00:00:00,2,1560
103,2008-05-20 00:00:00,4,2060
And we have loaded these two files into Pig with the relations customers and orders as shown below.
grunt> customers = LOAD ‘hdfs://localhost:9000/pig_data/customers.txt’ USING PigStorage(‘,’)
as (id:int, name:chararray, age:int, address:chararray, salary:int);

grunt> orders = LOAD ‘hdfs://localhost:9000/pig_data/orders.txt’ USING PigStorage(‘,’)
as (oid:int, date:chararray, customer_id:int, amount:int);
Let us now get the cross-product of these two relations using the cross operator on these two relations as shown below.
grunt> cross_data = CROSS customers, orders;
Verification
Verify the relation cross_data using the DUMP operator as shown below.
grunt> Dump cross_data;
Output
It will produce the following output, displaying the contents of the relation cross_data.
(7,Muffy,24,Indore,10000,103,2008-05-20 00:00:00,4,2060)
(7,Muffy,24,Indore,10000,101,2009-11-20 00:00:00,2,1560)
(7,Muffy,24,Indore,10000,100,2009-10-08 00:00:00,3,1500)
(7,Muffy,24,Indore,10000,102,2009-10-08 00:00:00,3,3000)
(6,Komal,22,MP,4500,103,2008-05-20 00:00:00,4,2060)
(6,Komal,22,MP,4500,101,2009-11-20 00:00:00,2,1560)
(6,Komal,22,MP,4500,100,2009-10-08 00:00:00,3,1500)
(6,Komal,22,MP,4500,102,2009-10-08 00:00:00,3,3000)
(5,Hardik,27,Bhopal,8500,103,2008-05-20 00:00:00,4,2060)
(5,Hardik,27,Bhopal,8500,101,2009-11-20 00:00:00,2,1560)
(5,Hardik,27,Bhopal,8500,100,2009-10-08 00:00:00,3,1500)
(5,Hardik,27,Bhopal,8500,102,2009-10-08 00:00:00,3,3000)
(4,Chaitali,25,Mumbai,6500,103,2008-05-20 00:00:00,4,2060)
(4,Chaitali,25,Mumbai,6500,101,2009-20 00:00:00,4,2060)
(2,Khilan,25,Delhi,1500,101,2009-11-20 00:00:00,2,1560)
(2,Khilan,25,Delhi,1500,100,2009-10-08 00:00:00,3,1500)
(2,Khilan,25,Delhi,1500,102,2009-10-08 00:00:00,3,3000)
(1,Ramesh,32,Ahmedabad,2000,103,2008-05-20 00:00:00,4,2060)
(1,Ramesh,32,Ahmedabad,2000,101,2009-11-20 00:00:00,2,1560)
(1,Ramesh,32,Ahmedabad,2000,100,2009-10-08 00:00:00,3,1500)
(1,Ramesh,32,Ahmedabad,2000,102,2009-10-08 00:00:00,3,3000)-11-20 00:00:00,2,1560)
(4,Chaitali,25,Mumbai,6500,100,2009-10-08 00:00:00,3,1500)
(4,Chaitali,25,Mumbai,6500,102,2009-10-08 00:00:00,3,3000)
(3,kaushik,23,Kota,2000,103,2008-05-20 00:00:00,4,2060)
(3,kaushik,23,Kota,2000,101,2009-11-20 00:00:00,2,1560)
(3,kaushik,23,Kota,2000,100,2009-10-08 00:00:00,3,1500)
(3,kaushik,23,Kota,2000,102,2009-10-08 00:00:00,3,3000)
(2,Khilan,25,Delhi,1500,103,2008-05-20 00:00:00,4,2060)
(2,Khilan,25,Delhi,1500,101,2009-11-20 00:00:00,2,1560)
(2,Khilan,25,Delhi,1500,100,2009-10-08 00:00:00,3,1500)
(2,Khilan,25,Delhi,1500,102,2009-10-08 00:00:00,3,3000)
(1,Ramesh,32,Ahmedabad,2000,103,2008-05-20 00:00:00,4,2060)
(1,Ramesh,32,Ahmedabad,2000,101,2009-11-20 00:00:00,2,1560)
(1,Ramesh,32,Ahmedabad,2000,100,2009-10-08 00:00:00,3,1500)
(1,Ramesh,32,Ahmedabad,2000,102,2009-10-08 00:00:00,3,3000)

Apache Pig – Union Operator

The UNION operator of Pig Latin is used to merge the content of two relations. To perform UNION operation on two relations, their columns and domains must be identical.
Syntax
Given below is the syntax of the UNION operator.
grunt> Relation_name3 = UNION Relation_name1, Relation_name2;
Example
Assume that we have two files namely student_data1.txt and student_data2.txt in the /pig_data/ directory of HDFS as shown below.
Student_data1.txt
001,Rajiv,Reddy,9848022337,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata
003,Rajesh,Khanna,9848022339,Delhi
004,Preethi,Agarwal,9848022330,Pune
005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai.
Student_data2.txt
7,Komal,Nayak,9848022334,trivendram.
8,Bharathi,Nambiayar,9848022333,Chennai.
And we have loaded these two files into Pig with the relations student1 and student2 as shown below.
grunt> student1 = LOAD ‘hdfs://localhost:9000/pig_data/student_data1.txt’ USING PigStorage(‘,’)
as (id:int, firstname:chararray, lastname:chararray, phone:chararray, city:chararray);

grunt> student2 = LOAD ‘hdfs://localhost:9000/pig_data/student_data2.txt’ USING PigStorage(‘,’)
as (id:int, firstname:chararray, lastname:chararray, phone:chararray, city:chararray);
Let us now merge the contents of these two relations using the UNION operator as shown below.
grunt> student = UNION student1, student2;
Verification
Verify the relation student using the DUMP operator as shown below.
grunt> Dump student;
Output
It will display the following output, displaying the contents of the relation student.
(1,Rajiv,Reddy,9848022337,Hyderabad) (2,siddarth,Battacharya,9848022338,Kolkata)
(3,Rajesh,Khanna,9848022339,Delhi)
(4,Preethi,Agarwal,9848022330,Pune)
(5,Trupthi,Mohanthy,9848022336,Bhuwaneshwar)
(6,Archana,Mishra,9848022335,Chennai)
(7,Komal,Nayak,9848022334,trivendram)
(8,Bharathi,Nambiayar,9848022333,Chennai)

So, this brings us to the end of blog. This Tecklearn ‘How to use Cross Operator and Union Operator in Pig Latin’ helps you with commonly asked questions if you are looking out for a job in Apache Pig and Big Data Domain.
If you wish to learn Apache Pig and build a career in Apache Pig or Big Data domain, then check out our interactive, Big Data Hadoop Analyst Training, that comes with 24*7 support to guide you throughout your learning period. Please find the link for course details:

Big Data Hadoop Analyst

Big Data Hadoop Analyst Training

About the Course

Big Data analysis is emerging as a key advantage in business intelligence for many organizations. Our Big Data and Hadoop training course lets you deep-dive into the concepts of Big Data, equipping you with the skills required for Hadoop Analyst roles. This course will enable an Analyst to work on Big Data and Hadoop which takes into consideration the burgeoning demands of the industry to process and analyse data at high speeds. This training course will give you the right skills to deploy various tools and techniques to be a Hadoop Analyst working with Big Data.

Why Should you take Hadoop Analyst Training?

• Average salary for a Big Data Hadoop Analyst is $115,819– ZipRecruiter.com.
• Hadoop Market is expected to reach $99.31B by 2022 growing at a CAGR of 42.1% from 2015 – Forbes.
• Amazon, Cloudera, Data Stax, DELL, EMC2, IBM, Microsoft & other MNCs worldwide use Hadoop

What you will Learn in this Course?

Hadoop Fundamentals
• The Motivation for Hadoop
• Hadoop Overview
• Data Storage: HDFS
• Distributed Data Processing: YARN, MapReduce, and Spark
• Data Processing and Analysis: Pig, Hive, and Impala
• Data Integration: Sqoop
• Other Hadoop Data Tools
• Exercise Scenarios Explanation
Introduction to Pig
• What Is Pig?
• Pig’s Features
• Pig Use Cases
• Interacting with Pig
Basic Data Analysis with Pig
• Pig Latin Syntax
• Loading Data
• Simple Data Types
• Field Definitions
• Data Output
• Viewing the Schema
• Filtering and Sorting Data
• Commonly-Used Functions
Processing Complex Data with Pig
• Storage Formats
• Complex/Nested Data Types
• Grouping
• Built-In Functions for Complex Data
• Iterating Grouped Data
Multi-Dataset Operations with Pig
• Techniques for Combining Data Sets
• Joining Data Sets in Pig
• Set Operations
• Splitting Data Sets
Pig Troubleshooting and Optimization
• Troubleshooting Pig
• Logging
• Using Hadoop’s Web UI
• Data Sampling and Debugging
• Performance Overview
• Understanding the Execution Plan
• Tips for Improving the Performance of Your Pig Jobs
Introduction to Hive and Impala
• What Is Hive?
• What Is Impala?
• Schema and Data Storage
• Comparing Hive to Traditional Databases
• Hive Use Cases
Querying with Hive and Impala
• Databases and Tables
• Basic Hive and Impala Query Language Syntax
• Data Types
• Differences Between Hive and Impala Query Syntax
• Using Hue to Execute Queries
• Using the Impala Shell
Data Management
• Data Storage
• Creating Databases and Tables
• Loading Data
• Altering Databases and Tables
• Simplifying Queries with Views
• Storing Query Results
Data Storage and Performance
• Partitioning Tables
• Choosing a File Format
• Managing Metadata
• Controlling Access to Data
Relational Data Analysis with Hive and Impala
• Joining Datasets
• Common Built-In Functions
• Aggregation and Windowing
Working with Impala
• How Impala Executes Queries
• Extending Impala with User-Defined Functions
• Improving Impala Performance
Analyzing Text and Complex Data with Hive
• Complex Values in Hive
• Using Regular Expressions in Hive
• Sentiment Analysis and N-Grams
• Conclusion
Hive Optimization
• Understanding Query Performance
• Controlling Job Execution Plan
• Bucketing
• Indexing Data
Extending Hive
• SerDes
• Data Transformation with Custom Scripts
• User-Defined Functions
• Parameterized Queries
Choosing the Best Tool for the Job
• Comparing MapReduce, Pig, Hive, Impala, and Relational Databases

Got a question for us? Please mention it in the comments section and we will get back to you.

 

0 responses on "How to use Cross Operator and Union Operator in Pig Latin"

Leave a Message

Your email address will not be published. Required fields are marked *