How to fetch the data from one or more tables in a database and fetch description in Impala

Last updated on May 30 2022
Swati Dogra

Table of Contents

How to fetch the data from one or more tables in a database and fetch description in Impala

Impala – Select Statement

Impala SELECT statement is used to fetch the data from one or more tables in a database. This query returns data in the form of tables.

Syntax

Following is the syntax of the Impala select statement.

SELECT column1, column2, columnN from table_name;

Here, column1, column2…are the fields of a table whose values you want to fetch. If you want to fetch all the fields available in the field, then you can use the following syntax −

SELECT * FROM table_name;

Example

Assume we have a table named customers in Impala, with the following data −

ID    NAME       AGE    ADDRESS      SALARY

—   ——-    —    ———-   ——-

1     Ramesh     32     Ahmedabad    20000

2     Khilan     25     Delhi        15000

3     Hardik     27     Bhopal       40000

4     Chaitali   25     Mumbai       35000

5     kaushik    23     Kota         30000

6     Komal      22     Mp           32000

You can fetch the id, name, and age of all the records of the customers table using select statement as shown below −

[quickstart.cloudera:21000] > select id, name, age from customers;

On executing the above query, Impala fetches id, name, age of all the records from the specified table and displays them as shown below.

Query: select id,name,age from customers

 

+—-+———-+—–+

| id | name     | age |

| 1  | Ramesh   | 32  |

| 2  | Khilan   | 25  |

| 3  | Hardik   | 27  |

| 4  | Chaitali | 25  |

| 5  | kaushik  | 23  |

| 6  | Komal    | 22  |

+—-+———-+—–+

 

Fetched 6 row(s) in 0.66s

You can also fetch all the records from the customers table using the select query as shown below.

[quickstart.cloudera:21000] > select name, age from customers;

Query: select * from customers

On executing the above query, Impala fetches and displays all the records from the specified table as shown below.

+—-+———-+—–+———–+——–+

| id | name     | age | address   | salary |

+—-+———-+—–+———–+——–+

| 1  | Ramesh   | 32  | Ahmedabad | 20000  |

| 2  | Khilan   | 25  | Delhi     | 15000  |

| 3  | Hardik   | 27  | Bhopal    | 40000  |

| 4  | Chaitali | 25  | Mumbai    | 35000  |

| 5  | kaushik  | 23  | Kota      | 30000  |

| 6  | Komal    | 22  | MP        | 32000  |

+—-+———-+—–+———–+——–+

 

Fetched 6 row(s) in 0.66s

Fetching the Records using Hue

Open Impala Query editor and type the select Statement in it. And click on the execute button as shown in the following screenshot.

image1 4

After executing the query, if you scroll down and select the Results tab, you can see the list of the records of the specified table as shown below.

image2 3

Impala – Describe Statement

The describe statement in Impala is used to give the description of the table. The result of this statement contains the information about a table such as the column names and their data types.

Syntax

Following is the syntax of the Impala describe statement.

Describe table_name;

Example

For example, assume we have a table named customer in Impala, with the following data −

ID    NAME     AGE    ADDRESS     SALARY

— ——— —– ———– ———–

1   Ramesh     32    Ahmedabad    20000

2   Khilan     25    Delhi        15000

3   Hardik     27    Bhopal       40000

4   Chaitali   25    Mumbai       35000

5   kaushik    23    Kota         30000

6   Komal      22    Mp           32000

You can get the description of the customer table using the describe statement as shown below −

[quickstart.cloudera:21000] > describe customer;

On executing the above query, Impala fetches the metadata of the specified table and displays it as shown below.

Query: describe customer

 

+———+——–+———+

| name    | type   | comment |

+———+——–+———+

| id      | int    |         |

| name    | string |         |

| age     | int    |         |

| address | string |         |

| salary  | bigint |         |

+———+——–+———+

 

Fetched 5 row(s) in 0.51s

Describing the Records using Hue

Open Impala Query editor and type the describe statement in it and click on the execute button as shown in the following screenshot.

image3 1

After executing the query, if you scroll down and select the Results tab, you can see the metadata of the table as shown below.

image4 1

So, this brings us to the end of blog. This Tecklearn ‘How to fetch the data from one or more tables in a database and fetch description in Impala’ helps you with commonly asked questions if you are looking out for a job in Big Data and Hadoop Domain.

If you wish to learn Impala and build a career in Big Data or Hadoop domain, then check out our interactive, Big Data Hadoop-Architect (All in 1) Combo Training, that comes with 24*7 support to guide you throughout your learning period. Please find the link for course details:

https://www.tecklearn.com/course/bigdata-hadoop-architect-all-in-1-combo-course/

Big Data Hadoop-Architect (All in 1) Combo Training

About the Course

Tecklearn’s Big Data Hadoop-Architect (All in 1) combo includes the following Courses:

  • BigData Hadoop Analyst
  • BigData Hadoop Developer
  • BigData Hadoop Administrator
  • BigData Hadoop Tester
  • Big Data Security with Kerberos

Why Should you take BigData Hadoop Combo Training?

  • Average salary for a Hadoop Administrator ranges from approximately $104,528 to $141,391 per annum – Indeed.com
  • Average salary for a Spark and Hadoop Developer ranges from approximately $106,366 to $127,619 per annum – Indeed.com
  • Average salary for a Big Data Hadoop Analyst is $115,819– ZipRecruiter.com

What you will Learn in this Course?

Introduction

  • The Case for Apache Hadoop
  • Why Hadoop?
  • Core Hadoop Components
  • Fundamental Concepts

HDFS

  • HDFS Features
  • Writing and Reading Files
  • NameNode Memory Considerations
  • Overview of HDFS Security
  • Using the Namenode Web UI
  • Using the Hadoop File Shell

Getting Data into HDFS

  • Ingesting Data from External Sources with Flume
  • Ingesting Data from Relational Databases with Sqoop
  • REST Interfaces
  • Best Practices for Importing Data

YARN and MapReduce

  • What Is MapReduce?
  • Basic MapReduce Concepts
  • YARN Cluster Architecture
  • Resource Allocation
  • Failure Recovery
  • Using the YARN Web UI
  • MapReduce Version 1

Planning Your Hadoop Cluster

  • General Planning Considerations
  • Choosing the Right Hardware
  • Network Considerations
  • Configuring Nodes
  • Planning for Cluster Management

Hadoop Installation and Initial Configuration

  • Deployment Types
  • Installing Hadoop
  • Specifying the Hadoop Configuration
  • Performing Initial HDFS Configuration
  • Performing Initial YARN and MapReduce Configuration
  • Hadoop Logging

Installing and Configuring Hive, Impala, and Pig

  • Hive
  • Impala
  • Pig

Hadoop Clients

  • What is a Hadoop Client?
  • Installing and Configuring Hadoop Clients
  • Installing and Configuring Hue
  • Hue Authentication and Authorization

Cloudera Manager

  • The Motivation for Cloudera Manager
  • Cloudera Manager Features
  • Express and Enterprise Versions
  • Cloudera Manager Topology
  • Installing Cloudera Manager
  • Installing Hadoop Using Cloudera Manager
  • Performing Basic Administration Tasks Using Cloudera Manager

Advanced Cluster Configuration

  • Advanced Configuration Parameters
  • Configuring Hadoop Ports
  • Explicitly Including and Excluding Hosts
  • Configuring HDFS for Rack Awareness
  • Configuring HDFS High Availability

Hadoop Security

  • Why Hadoop Security Is Important
  • Hadoop’s Security System Concepts
  • What Kerberos Is and How it Works
  • Securing a Hadoop Cluster with Kerberos

Managing and Scheduling Jobs

  • Managing Running Jobs
  • Scheduling Hadoop Jobs
  • Configuring the Fair Scheduler
  • Impala Query Scheduling

Cluster Maintenance

  • Checking HDFS Status
  • Copying Data Between Clusters
  • Adding and Removing Cluster Nodes
  • Rebalancing the Cluster
  • Cluster Upgrading

Cluster Monitoring and Troubleshooting

  • General System Monitoring
  • Monitoring Hadoop Clusters
  • Common Troubleshooting Hadoop Clusters
  • Common Misconfigurations

Introduction to Pig

  • What Is Pig?
  • Pig’s Features
  • Pig Use Cases
  • Interacting with Pig

Basic Data Analysis with Pig

  • Pig Latin Syntax
  • Loading Data
  • Simple Data Types
  • Field Definitions
  • Data Output
  • Viewing the Schema
  • Filtering and Sorting Data
  • Commonly-Used Functions

Processing Complex Data with Pig

  • Storage Formats
  • Complex/Nested Data Types
  • Grouping
  • Built-In Functions for Complex Data
  • Iterating Grouped Data

Multi-Dataset Operations with Pig

  • Techniques for Combining Data Sets
  • Joining Data Sets in Pig
  • Set Operations
  • Splitting Data Sets

Pig Troubleshooting and Optimization

  • Troubleshooting Pig
  • Logging
  • Using Hadoop’s Web UI
  • Data Sampling and Debugging
  • Performance Overview
  • Understanding the Execution Plan
  • Tips for Improving the Performance of Your Pig Jobs

Introduction to Hive and Impala

  • What Is Hive?
  • What Is Impala?
  • Schema and Data Storage
  • Comparing Hive to Traditional Databases
  • Hive Use Cases

Querying with Hive and Impala

  • Databases and Tables
  • Basic Hive and Impala Query Language Syntax
  • Data Types
  • Differences Between Hive and Impala Query Syntax
  • Using Hue to Execute Queries
  • Using the Impala Shell

Data Management

  • Data Storage
  • Creating Databases and Tables
  • Loading Data
  • Altering Databases and Tables
  • Simplifying Queries with Views
  • Storing Query Results

Data Storage and Performance

  • Partitioning Tables
  • Choosing a File Format
  • Managing Metadata
  • Controlling Access to Data

Relational Data Analysis with Hive and Impala

  • Joining Datasets
  • Common Built-In Functions
  • Aggregation and Windowing

Working with Impala 

  • How Impala Executes Queries
  • Extending Impala with User-Defined Functions
  • Improving Impala Performance

Analyzing Text and Complex Data with Hive

  • Complex Values in Hive
  • Using Regular Expressions in Hive
  • Sentiment Analysis and N-Grams
  • Conclusion

Hive Optimization 

  • Understanding Query Performance
  • Controlling Job Execution Plan
  • Bucketing
  • Indexing Data

Extending Hive 

  • SerDes
  • Data Transformation with Custom Scripts
  • User-Defined Functions
  • Parameterized Queries

Importing Relational Data with Apache Sqoop

  • Sqoop Overview
  • Basic Imports and Exports
  • Limiting Results
  • Improving Sqoop’s Performance
  • Sqoop 2

Introduction to Impala and Hive

  • Introduction to Impala and Hive
  • Why Use Impala and Hive?
  • Comparing Hive to Traditional Databases
  • Hive Use Cases

Modelling and Managing Data with Impala and Hive

  • Data Storage Overview
  • Creating Databases and Tables
  • Loading Data into Tables
  • HCatalog
  • Impala Metadata Caching

Data Formats

  • Selecting a File Format
  • Hadoop Tool Support for File Formats
  • Avro Schemas
  • Using Avro with Hive and Sqoop
  • Avro Schema Evolution
  • Compression

Data Partitioning

  • Partitioning Overview
  • Partitioning in Impala and Hive

Capturing Data with Apache Flume

  • What is Apache Flume?
  • Basic Flume Architecture
  • Flume Sources
  • Flume Sinks
  • Flume Channels
  • Flume Configuration

Spark Basics

  • What is Apache Spark?
  • Using the Spark Shell
  • RDDs (Resilient Distributed Datasets)
  • Functional Programming in Spark

Working with RDDs in Spark

  • A Closer Look at RDDs
  • Key-Value Pair RDDs
  • MapReduce
  • Other Pair RDD Operations

Writing and Deploying Spark Applications

  • Spark Applications vs. Spark Shell
  • Creating the SparkContext
  • Building a Spark Application (Scala and Java)
  • Running a Spark Application
  • The Spark Application Web UI
  • Configuring Spark Properties
  • Logging

Parallel Programming with Spark

  • Review: Spark on a Cluster
  • RDD Partitions
  • Partitioning of File-based RDDs
  • HDFS and Data Locality
  • Executing Parallel Operations
  • Stages and Tasks

Spark Caching and Persistence

  • RDD Lineage
  • Caching Overview
  • Distributed Persistence

Common Patterns in Spark Data Processing

  • Common Spark Use Cases
  • Iterative Algorithms in Spark
  • Graph Processing and Analysis
  • Machine Learning
  • Example: k-means

Preview: Spark SQL

  • Spark SQL and the SQL Context
  • Creating DataFrames
  • Transforming and Querying DataFrames
  • Saving DataFrames
  • Comparing Spark SQL with Impala

Hadoop Testing

  • Hadoop Application Testing
  • Roles and Responsibilities of Hadoop Testing Professional
  • Framework MRUnit for Testing of MapReduce Programs
  • Unit Testing
  • Test Execution
  • Test Plan Strategy and Writing Test Cases for Testing Hadoop Application

Big Data Testing

  • BigData Testing
  • Unit Testing
  • Integration Testing
  • Functional Testing
  • Non-Functional Testing
  • Golden Data Set

System Testing

  • Building and Set up
  • Testing SetUp
  • Solary Server
  • Non-Functional Testing
  • Longevity Testing
  • Volumetric Testing

Security Testing

  • Security Testing
  • Non-Functional Testing
  • Hadoop Cluster
  • Security-Authorization RBA
  • IBM Project

Automation Testing

  • Query Surge Tool

Oozie

  • Why Oozie
  • Installation Engine
  • Oozie Workflow Engine
  • Oozie security
  • Oozie Job Process
  • Oozie terminology
  • Oozie bundle

Got a question for us? Please mention it in the comments section and we will get back to you.

 

0 responses on "How to fetch the data from one or more tables in a database and fetch description in Impala"

Leave a Message

Your email address will not be published. Required fields are marked *