Dictionary in Python

Last updated on Jan 21 2023
Prabhas Ramanathan

Each key is separated from its value by a colon (:), the items are separated by commas, and the whole thing is enclosed in curly braces. An empty dictionary without any items is written with just two curly braces, like this: {}.
Keys are unique within a dictionary while values may not be. The values of a dictionary can be of any type, but the keys must be of an immutable data type such as strings, numbers, or tuples.

Table of Contents

Accessing Values in Dictionary

To access dictionary elements, you can use the familiar square brackets along with the key to obtain its value. Following is a simple example −


#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}
print "dict['Name']: ", dict['Name']
print "dict['Age']: ", dict['Age']
When the above code is executed, it produces the following result −
dict['Name']: Zara
dict['Age']: 7
If we attempt to access a data item with a key, which is not part of the dictionary, we get an error as follows −

#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}
print "dict['Alice']: ", dict['Alice']
When the above code is executed, it produces the following result −
dict['Alice']:
Traceback (most recent call last):
File "test.py", line 4, in <module>
print "dict['Alice']: ", dict['Alice'];
KeyError: 'Alice'

 

Updating Dictionary

You can update a dictionary by adding a new entry or a key-value pair, modifying an existing entry, or deleting an existing entry as shown below in the simple example −


#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}
dict['Age'] = 8; # update existing entry
dict['School'] = "DPS School"; # Add new entry

print "dict['Age']: ", dict['Age']
print "dict['School']: ", dict['School']
When the above code is executed, it produces the following result −
dict['Age']: 8
dict['School']: DPS School

 

Delete Dictionary Elements

You can either remove individual dictionary elements or clear the entire contents of a dictionary. You can also delete entire dictionary in a single operation.
To explicitly remove an entire dictionary, just use the del statement. Following is a simple example −


#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Class': 'First'}
del dict['Name']; # remove entry with key 'Name'
dict.clear(); # remove all entries in dict
del dict ; # delete entire dictionary

print "dict['Age']: ", dict['Age']
print "dict['School']: ", dict['School']
This produces the following result. Note that an exception is raised because after del dict dictionary does not exist any more −
dict['Age']:
Traceback (most recent call last):
File "test.py", line 8, in <module>
print "dict['Age']: ", dict['Age'];

TypeError: ‘type’ object is unsubscriptable
Note − del() method is discussed in subsequent section.

Properties of Dictionary Keys

Dictionary values have no restrictions. They can be any arbitrary Python object, either standard objects or user-defined objects. However, same is not true for the keys.
There are two important points to remember about dictionary keys −
(a) More than one entry per key not allowed. Which means no duplicate key is allowed. When duplicate keys encountered during assignment, the last assignment wins. For example −


#!/usr/bin/python

dict = {'Name': 'Zara', 'Age': 7, 'Name': 'Manni'}
print "dict['Name']: ", dict['Name']
When the above code is executed, it produces the following result −
dict['Name']: Manni
(b) Keys must be immutable. Which means you can use strings, numbers or tuples as dictionary keys but something like ['key'] is not allowed. Following is a simple example −

#!/usr/bin/python

dict = {['Name']: 'Zara', 'Age': 7}
print "dict['Name']: ", dict['Name']
When the above code is executed, it produces the following result −
Traceback (most recent call last):
File "test.py", line 3, in <module>
dict = {['Name']: 'Zara', 'Age': 7};

TypeError: unhashable type: ‘list’

Built-in Dictionary Functions & Methods

Python includes the following dictionary functions −

Sr.No. Function with Description
1 cmp(dict1, dict2)

Compares elements of both dict.

2 len(dict)

Gives the total length of the dictionary. This would be equal to the number of items in the dictionary.

3 str(dict)

Produces a printable string representation of a dictionary

4 type(variable)

Returns the type of the passed variable. If passed variable is dictionary, then it would return a dictionary type.

Python includes following dictionary methods −

Sr.No. Methods with Description
1 dict.clear()

Removes all elements of dictionary dict

2 dict.copy()

Returns a shallow copy of dictionary dict

3 dict.fromkeys()

Create a new dictionary with keys from seq and values set to value.

4 dict.get(key, default=None)

For key key, returns value or default if key not in dictionary

5 dict.has_key(key)

Returns true if key in dictionary dict, false otherwise

6 dict.items()

Returns a list of dict‘s (key, value) tuple pairs

7 dict.keys()

Returns list of dictionary dict’s keys

8 dict.setdefault(key, default=None)

Similar to get(), but will set dict[key]=default if key is not already in dict

9 dict.update(dict2)

Adds dictionary dict2‘s key-values pairs to dict

10 dict.values()

Returns list of dictionary dict‘s values

So, this brings us to the end of blog. This Tecklearn ‘Dictionary in Python’ blog helps you with commonly asked questions if you are looking out for a job in Python Programming. If you wish to learn Python and build a career in Python Programming domain, then check out our interactive, Python with Data Science Training, that comes with 24*7 support to guide you throughout your learning period.

Python with Data Science Training

About the Course

Python with Data Science training lets you master the concepts of the widely used and powerful programming language, Python. This Python Course will also help you master important Python programming concepts such as data operations, file operations, object-oriented programming and various Python libraries such as Pandas, NumPy, Matplotlib which are essential for Data Science. You will work on real-world projects in the domain of Python and apply it for various domains of Big Data, Data Science and Machine Learning.

Why Should you take Python with Data Science Training?

• Python is the preferred language for new technologies such as Data Science and Machine Learning.
• Average salary of Python Certified Developer is $123,656 per annum – Indeed.com
• Python is by far the most popular language for data science. Python held 65.6% of the data science market.

What you will Learn in this Course?

Introduction to Python

• Define Python
• Understand the need for Programming
• Know why to choose Python over other languages
• Setup Python environment
• Understand Various Python concepts – Variables, Data Types Operators, Conditional Statements and Loops
• Illustrate String formatting
• Understand Command Line Parameters and Flow control

Python Environment Setup and Essentials

• Python installation
• Windows, Mac & Linux distribution for Anaconda Python
• Deploying Python IDE
• Basic Python commands, data types, variables, keywords and more

Python language Basic Constructs

• Looping in Python
• Data Structures: List, Tuple, Dictionary, Set
• First Python program
• Write a Python Function (with and without parameters)
• Create a member function and a variable
• Tuple
• Dictionary
• Set and Frozen Set
• Lambda function

OOP (Object Oriented Programming) in Python

• Object-Oriented Concepts

Working with Modules, Handling Exceptions and File Handling

• Standard Libraries
• Modules Used in Python (OS, Sys, Date and Time etc.)
• The Import statements
• Module search path
• Package installation ways
• Errors and Exception Handling
• Handling multiple exceptions

Introduction to NumPy

• Introduction to arrays and matrices
• Indexing of array, datatypes, broadcasting of array math
• Standard deviation, Conditional probability
• Correlation and covariance
• NumPy Exercise Solution

Introduction to Pandas

• Pandas for data analysis and machine learning
• Pandas for data analysis and machine learning Continued
• Time series analysis
• Linear regression
• Logistic Regression
• ROC Curve
• Neural Network Implementation
• K Means Clustering Method

Data Visualisation

• Matplotlib library
• Grids, axes, plots
• Markers, colours, fonts and styling
• Types of plots – bar graphs, pie charts, histograms
• Contour plots

Data Manipulation

• Perform function manipulations on Data objects
• Perform Concatenation, Merging and Joining on DataFrames
• Iterate through DataFrames
• Explore Datasets and extract insights from it

Scikit-Learn for Natural Language Processing

• What is natural language processing, working with NLP on text data
• Scikit-Learn for Natural Language Processing
• The Scikit-Learn machine learning algorithms
• Sentimental Analysis – Twitter

Introduction to Python for Hadoop

• Deploying Python coding for MapReduce jobs on Hadoop framework.
• Python for Apache Spark coding
• Deploying Spark code with Python
• Machine learning library of Spark MLlib
• Deploying Spark MLlib for Classification, Clustering and Regression

Got a question for us? Please mention it in the comments section and we will get back to you.

 

 

0 responses on "Dictionary in Python"

Leave a Message

Your email address will not be published. Required fields are marked *