Deep dive into File Handling in Scala

Last updated on May 30 2022
Shakuntala Deskmukh

Table of Contents

Deep dive into File Handling in Scala

Scala – Files I/O

Scala is open to make use of any Java objects and java.io.File is one of the objects which can be employed in Scala programming to read and write files.

The leads is an example program to writing to a file.

Example

import java.io._




object Demo {

   def main(args: Array[String]) {

      val writer = new PrintWriter(new File("test.txt" ))




      writer.write("Hello Scala")

      writer.close()

   }

}

Save the above program in Demo.scala. The leads commands are employed to compile and execute this program.

Command

\>scalac Demo.scala

\>scala Demo

It will create a file named Demo.txt in the current directory, where the program is placed. The leads is the content of that file.

Output

Hello Scala

Reading a Line from Command Line

Sometime you need to read user input from the screen and then proceed for some further processing. Leads example program shows you how to read input from the command line.

Example

object Demo {

   def main(args: Array[String]) {

      print("Please enter your input : " )

      val line = Console.readLine

     

      println("Thanks, you just typed: " + line)

   }

}

Save the above program in Demo.scala. The leads commands are employed to compile and execute this program.

Command

\>scalac Demo.scala

\>scala Demo

Output

Please enter your input : Scala is great

Thanks, you just typed: Scala is great

Reading File Content

Reading from files is really simple. You can use Scala’s Source class and its companion object to read files. Leads is the example which shows you how to read from “Demo.txt” file which we created earlier.

Example

import scala.io.Source




object Demo {

   def main(args: Array[String]) {

      println("Leads is the content read:" )




      Source.fromFile("Demo.txt" ).foreach {

         print

      }

   }

}

Save the above program in Demo.scala. The leads commands are employed to compile and execute this program.

Command

\>scalac Demo.scala

\>scala Demo

Output

Leads is the content read:

Hello Scala

 

So, this brings us to the end of blog. This Tecklearn ‘Deep dive into File Handling in Scala’ helps you with commonly asked questions if you are looking out for a job in Apache Spark and Scala and Big Data Developer. If you wish to learn Apache Spark and Scala and build a career in Big Data Hadoop domain, then check out our interactive, Apache Spark and Scala Training, that comes with 24*7 support to guide you throughout your learning period. Please find the link for course details

https://www.tecklearn.com/course/apache-spark-and-scala-certification/

Apache Spark and Scala Training

About the Course

Tecklearn Spark training lets you master real-time data processing using Spark streaming, Spark SQL, Spark RDD and Spark Machine Learning libraries (Spark MLlib). This Spark certification training helps you master the essential skills of the Apache Spark open-source framework and Scala programming language, including Spark Streaming, Spark SQL, machine learning programming, GraphX programming, and Shell Scripting Spark. You will also understand the role of Spark in overcoming the limitations of MapReduce. Upon completion of this online training, you will hold a solid understanding and hands-on experience with Apache Spark.

Why Should you take Apache Spark and Scala Training?

  • The average salary for Apache Spark developer ranges from approximately $93,486 per year for Developer to $128,313 per year for Data Engineer. – Indeed.com
  • Wells Fargo, Microsoft, Capital One, Apple, JPMorgan Chase & many other MNC’s worldwide use Apache Spark across industries.
  • Global Spark market revenue will grow to $4.2 billion by 2022 with a CAGR of 67% Marketanalysis.com

What you will Learn in this Course?

Introduction to Scala for Apache Spark

  • What is Scala
  • Why Scala for Spark
  • Scala in other Frameworks
  • Scala REPL
  • Basic Scala Operations
  • Variable Types in Scala
  • Control Structures in Scala
  • Loop, Functions and Procedures
  • Collections in Scala
  • Array Buffer, Map, Tuples, Lists

Functional Programming and OOPs Concepts in Scala

  • Functional Programming
  • Higher Order Functions
  • Anonymous Functions
  • Class in Scala
  • Getters and Setters
  • Custom Getters and Setters
  • Constructors in Scala
  • Singletons
  • Extending a Class using Method Overriding

Introduction to Spark

  • Introduction to Spark
  • How Spark overcomes the drawbacks of MapReduce
  • Concept of In Memory MapReduce
  • Interactive operations on MapReduce
  • Understanding Spark Stack
  • HDFS Revision and Spark Hadoop YARN
  • Overview of Spark and Why it is better than Hadoop
  • Deployment of Spark without Hadoop
  • Cloudera distribution and Spark history server

Basics of Spark

  • Spark Installation guide
  • Spark configuration and memory management
  • Driver Memory Versus Executor Memory
  • Working with Spark Shell
  • Resilient distributed datasets (RDD)
  • Functional programming in Spark and Understanding Architecture of Spark

Playing with Spark RDDs

  • Challenges in Existing Computing Methods
  • Probable Solution and How RDD Solves the Problem
  • What is RDD, It’s Operations, Transformations & Actions Data Loading and Saving Through RDDs
  • Key-Value Pair RDDs
  • Other Pair RDDs and Two Pair RDDs
  • RDD Lineage
  • RDD Persistence
  • Using RDD Concepts Write a Wordcount Program
  • Concept of RDD Partitioning and How It Helps Achieve Parallelization
  • Passing Functions to Spark

Writing and Deploying Spark Applications

  • Creating a Spark application using Scala or Java
  • Deploying a Spark application
  • Scala built application
  • Creating application using SBT
  • Deploying application using Maven
  • Web user interface of Spark application
  • A real-world example of Spark and configuring of Spark

Parallel Processing

  • Concept of Spark parallel processing
  • Overview of Spark partitions
  • File Based partitioning of RDDs
  • Concept of HDFS and data locality
  • Technique of parallel operations
  • Comparing coalesce and Repartition and RDD actions

Machine Learning using Spark MLlib

  • Why Machine Learning
  • What is Machine Learning
  • Applications of Machine Learning
  • Face Detection: USE CASE
  • Machine Learning Techniques
  • Introduction to MLlib
  • Features of MLlib and MLlib Tools
  • Various ML algorithms supported by MLlib

Integrating Apache Flume and Apache Kafka

  • Why Kafka, what is Kafka and Kafka architecture
  • Kafka workflow and Configuring Kafka cluster
  • Basic operations and Kafka monitoring tools
  • Integrating Apache Flume and Apache Kafka

Apache Spark Streaming

  • Why Streaming is Necessary
  • What is Spark Streaming
  • Spark Streaming Features
  • Spark Streaming Workflow
  • Streaming Context and DStreams
  • Transformations on DStreams
  • Describe Windowed Operators and Why it is Useful
  • Important Windowed Operators
  • Slice, Window and ReduceByWindow Operators
  • Stateful Operators

Improving Spark Performance

  • Learning about accumulators
  • The common performance issues and troubleshooting the performance problems

DataFrames and Spark SQL

  • Need for Spark SQL
  • What is Spark SQL
  • Spark SQL Architecture
  • SQL Context in Spark SQL
  • User Defined Functions
  • Data Frames and Datasets
  • Interoperating with RDDs
  • JSON and Parquet File Formats
  • Loading Data through Different Sources

Scheduling and Partitioning in Apache Spark

  • Concept of Scheduling and Partitioning in Spark
  • Hash partition and range partition
  • Scheduling applications
  • Static partitioning and dynamic sharing
  • Concept of Fair scheduling
  • Map partition with index and Zip
  • High Availability
  • Single-node Recovery with Local File System and High Order Functions
Got a question for us? Please mention it in the comments section and we will get back to you.

 

 

0 responses on "Deep dive into File Handling in Scala"

Leave a Message

Your email address will not be published. Required fields are marked *